

Patient ID : 290624036
Patient Name : MRS. ASHA SHRIVASTAVA
 Age/Gender : 77 Years / Female
Ref. By : DR.SANJAY MITTAL
Client : Dhruvi pathology collection center

Registered On : 29-Jun-2024
 Sample Collected On : 29-Jun-2024
 Sample Reported On : 29-Jun-2024
 Sample ID

HAEMATOLOGY

Test Name	Observed Values	Unit	Bio Ref. Interval
Hemoglobin	: 9.8	g/dl	11 -14
Packed Cell Volume (HCT)	: 30.1	%	36-46
R.B.C. Count	: 3.15	mil/ μ L	3.8 - 4.8
Mean Cell Volume(MCV)	: 95.6	fl	83-101
Mean Cell Hemoglobin(MCH)	: 31.1	pg	27-32
Mean Cell Hb Conc(MCHC)	: 32.6	%	32 -38
RDW (CV)	: 15.0	%	11.6-14.0
Total W.B.C Count (Leukocytes count)	: 5300	/cumm	4000-11000
Differential % WBCs count			
Neutrophils	: 68.5	%	40-80
Lymphocytes	: 23.7	%	20 -40
Eosinophils	: 3.0	%	1-6
Monocytes	: 04.8	%	2 -10
Basophils	: 0.0	%	
Platelet Count	: 183000	/cumm	150000-450000
Mean Platelet Volume (MPV)	: 9.5	fl	7.2-11.7
Platelet Distribution Width (PDW)	: 13.1	%	10-14
PCT (Platelet Crit)	: 0.17	%	0.17-0.37

Method

EDTA Whole Blood - Tests done on Automated three Part Cell Counter. (Hemoglobin Cyanide colorimetric. WBC, RBC Platelet count by DC impedance method, other parameters calculated) All Abnormal Haemograms are reviewed confirmed microscopically.

ESR (ERYTHROCYTE SEDIMENTATION RATE)

Test Name	Observed Values	Unit	Bio Ref. Interval
ERYTHROCYTE SEDIMENTATION RATE	: 28	mm/1hr.	0 -20
Method	: Wintrobe Method		

Interpretation :

An erythrocyte sedimentation rate test, also called an ESR or sed rate test, measures the speed at which red blood cells settle to the bottom of an upright glass test tube. This measurement is important because when abnormal proteins are present in the blood, typically due to inflammation or infection, they cause red blood cells to clump together and sink more quickly, which results in a high ESR value. The ESR is useful in detecting inflammation in the body that may be caused by infection, some cancers, and certain autoimmune diseases such as juvenile idiopathic arthritis, lupus and Kawasaki disease. The ESR alone can't be used to diagnose any one specific disease, however.

Dr. Rashmi Samele
MD Pathologist

Lab Physician
Dr. Amit Kumar Samadhiya
MD Biochemistry

Patient ID : 290624036
Patient Name : MRS. ASHA SHRIVASTAVA
 Age/Gender : 77 Years / Female
Ref. By : DR.SANJAY MITTAL
Client : Dhruvi pathology collection center

Registered On : 29-Jun-2024
 Sample Collected On : 29-Jun-2024
 Sample Reported On : 29-Jun-2024
 Sample ID :
 * 2 9 0 6 2 4 0 3 6 *

RENAL FUNCTION TEST

Test Name	Observed Values	Unit	Bio Ref. Interval
Blood Urea	: 41.32	mg/dL	10-40
Methodology : GLDH urease			
S. Creatinine	: 1.43	mg/dL	0.6 - 1.4
Methodology : Enzymatic kinetic			
Blood Urea Nitrogen	: 19	mg/dL	5.0 - 18.0
Method: Calculated			
Electrolytes			
S. Sodium	: 132.6	mmol/L	135-146
Methodology : Indirect ISE			
S. Potassium	: 4.83	mmol/L	3.4-5.1
Methodology : Indirect ISE			
S. Chloride	: 102.3	mmol/L	98-108
Methodology : Indirect ISE			
Methodology : Indirect ISE			

Interpretation :

Renal function tests (RFT) are performed for evaluation of kidney function. The blood urea nitrogen or BUN test is primarily used, along with the creatinine test, to evaluate kidney function in a wide range of circumstances, to help diagnose kidney disease, and to monitor people with acute or chronic kidney dysfunction or failure. 1. Blood Urea Nitrogen (BUN) - Urea is a waste product formed in the liver when protein is metabolized. Urea is released by the liver into the blood and is carried to the kidneys, where it is filtered out of the blood and released into the urine. 2. Creatinine - Creatinine is a waste product produced by muscles from the breakdown of a compound called creatine. Almost all creatinine is filtered from the blood by the kidneys and released into the urine, so blood levels are usually a good indicator of how well the kidneys are working. 3. Uric acid - The uric acid blood test is used to detect high levels of this compound in the blood in order to help diagnose recurrent kidney stones and gout. The test is also used to monitor uric acid levels in people undergoing chemotherapy or radiation treatment for cancer.

Patient ID : 290624036
Patient Name : MRS. ASHA SHRIVASTAVA
 Age/Gender : 77 Years / Female
Ref. By : DR.SANJAY MITTAL
Client : Dhruvi pathology collection center

Registered On : 29-Jun-2024
 Sample Collected On : 29-Jun-2024
 Sample Reported On : 29-Jun-2024
 Sample ID

NT-Pro BNP

Test Name	Observed Values	Unit	Bio Ref. Interval
N-terminal pro B-type Natriuretic Peptide(NT-proBNP)	:28648.8	pg/ml	<75 YEARS : 0.-300 PG/ML >75 YEARS : 0-450 PG/ML

Interpretation :

B-type natriuretic peptide (BNP) is a small protein secreted by the ventricles of the heart in response to excessive stretching of the heart muscles cells (myocytes). BNP is secreted into the blood when your heart is working hard. The N-terminal fragment of BNP is a highly sensitive marker for cardiac dysfunction. An elevated NT-proBNP level always indicates the presence of an underlying cardiac disorder. It can even identify people with structural heart disease and cardiac dysfunction before symptoms begin. Even relatively low levels of NT-proBNP may be considered an index of increased cardiovascular risk since NT-proBNP abnormalities correlate well with development of progressive atherosclerosis.

Comment

Comment : Please correlate with clinical condition.

Technology : ELFA.

Notes : Clinical diagnosis should not be made on the findings of a single test result, but should integrate both clinical and laboratory data.

Remark :Kindly correlate clinically & follow up.

END OF REPORT

Results apply only to the tested sample. Their accuracy depends on sample quality.
 Lab tests aid diagnosis, but your doctor should interpret them.
 Report delays may occur. We apologize for any inconvenience.
 Results may vary between labs. Identity of the patient not confirmed during sample collection and sample receiving. Results are not for legal purposes.
Contact the lab immediately if results are clinically inconsistent.